continuate.arclength¶
numerical continuation with tangent space
-
continuate.arclength.continuation(func, x, *args, **kwds)[source]¶ Generator for continuation of a vector function \(F(x, \mu)\)
Using Newton-Krylov-Hook algorithm in each of continuation steps.
Parameters: func : (numpy.array, float) -> numpy.array
\(F(x, \mu)\)
func(x, mu)must have same dimension ofxx : numpy.array
Initial point of continuation, and satisfies \(F(x, \mu) = 0\)
mu : float
Initial parameter of continuation, and satisfies \(F(x, \mu) = 0\)
delta : float
step length of continuation. To decrease the parameter, you should set negative value.
Yields: x : numpy.array
\(x\)
mu : float
\(\mu\)
-
continuate.arclength.default_options= {'tangent_dmu': 1e-07}¶ default values of options
You can get these values through
continuate.get_default_options()Parameters: tangentspace_dmu : float
Infinitesimal of parameter \(d\mu\) for calculating \(dx/d\mu\)